Billing Management on Salesforce Spring

2020 API Reference Guide

Table of Contents

A OUL TS GUIT ettt e st s s ss s sasss s assssaesssassssaens
WMVNOUE'S INBW ettt es st ssss st ssssass s s sss s sasss s sesssassassassasssssssassasssens

OVEBIVIBW et eeesess s ss e sss s e ssss s sassssssssssssssassassassssassassssssassasssassassassssassassssssases

API Supported Packages

API Standards and Development Platforms

Standards

Development Platforms

Field Types

BILLING APIS oo ssssssssssssssssssssssssess

Billing Services

Creating Credit Memo Documents

Creating Invoice Documents

Creating Invoices

Creating Invoices for Orders

Previewing Pending Usage Inputs

Processing Pending Usage Inputs

Processing Rated Usage Inputs

Updating Tax Calculations And Breakups on Credit Memos

Updating Tax Calculations and Breakups on Invoice

Forecasting Billing Schedules

Creating Credit and Rebill

Creating Billing Plans

Forecasting Billing Schedules and Billing Summaries

Creating Direct Credit Memos

Creating Billing Plan with Product Configuration

Forecasting Billing Schedules for Smart Cart

Applying a Late Fee

Cancelling a Late Fee

REST Services

Creating Invoices for Orders - REST Service

Creating Invoices - REST Service

Processing Pending Usage Inputs - REST Service

WSDL Services

Applying Credit Memos to Invoices

Applying Payments to Invoices

Adding a A/R Transaction - Deprecated
Adding Multiple A/R Transactions - Deprecated

Apttus Copyright Disclaimer

About this Guide

Apttus provides Application Programming Interfaces (API) for you to extend the features
offered by Apttus Billing Management. These extensions add more functionality to the
features available through configuration on Salesforce.

The Apttus Billing Management API Reference Guide describes the APIs provided to work
with payments, usage inputs, credit memos, and invoice calculations.

What's New

The following table lists changes in the documentation to support each release.

Document

Spring 2020

Winter 2019

Summer 2019

Spring 2019

Winter 2018

Summer 2018

Topic

Creating Direct Credit Memos
Creating Billing Plan with Product
Configuration

Applying a Late Fee

Cancelling a Late Fee
Forecasting Billing Schedules for
Smart Cart

Creating Direct Credit Memos
Forecasting Billing Schedules and
Billing Summatries

Creating Billing Plans

Forecasting Billing Schedules

Creating Credit and Rebill

Description

Modified topic. Updated the API to
include isFullCredit parameter.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New Topic.

release.

New APl introduced in this

New API| introduced in this

New API introduced in this

New API introduced in this

New API| introduced in this

New APl introduced in this

New API| introduced in this

New API introduced in this

New API introduced in this

Overview

- API Supported Packages

The package names and version numbers required for the APls to work seamlessly.

- AP| Standards and Development Platforms

Apttus APIs are based on Salesforce APls and use the same standards and platforms.

- Field Types

Apttus APls use a subset of the supported data and field types on Salesforce.

APl Supported Packages

The following packages and dependent packages are required for Billing Management

APls:

Product

Apttus Billing Management

Apttus Base Library

Apttus Quote/Proposal-Configuration Integration
Apttus Configuration & Pricing

Apttus CPQ API

Apttus Quote/Proposal-Asset Integration

Apttus Proposal Management

Apttus Contract Management

Apttus Contract-Configuration Integration

Apttus Quote/Proposal-Contract Integration

Package Version

(Name | Number)

6.1.129] 6.129
1.0.2311.23
11.2.03102 | 11.312
12.0.1712 [121712
1.0.0080 | 10.80
6.5.0014 | 6.14

9.2.0205]9.205

10.2.0491110.491
1.2.0122 | 11122
7.0.0031|7.31

APl Standards and Development Platforms

Apttus APIs are based on Salesforce APls and use the same standards and platforms.

Standards

Name Reference

Simple Object Access Protocol (SOAP) 1.1 http://www.w3.0rg/TR/2000/NOTE-
SOAP-20000508

Web Service Description Language (WSDL) 1.1 http://www.w3.0rg/TR/2001/NOTE-wsd(-20010315

WS- Basic Profile 1.1 http://www.ws-i.org/Profiles/
BasicProfile-1.1-2004-08-24.html

Development Platforms

Apttus SOAP APl works with standard SOAP development environments. For a list of
compatible development platforms, see Salesforce Developer Force AP detalils.

Field Types

Apttus APls use a subset of the supported data and field types on Salesforce.

The following table lists the field types that Apttus supports. For a comprehensive list of all
field types supported by Salesforce, see Salesforce Data Types.

Type Description
Boolean The Boolean field has a true(or 1) or false(or 0) value.
Data object The Data Object field is an ID type and is represented by CPQ.nnDO

in this document.

Date The Date field contains date values only and do not contain
relevant time values. Time in a date field is always set to midnight
in the UTC time zone. If you want a timestamp you must use a
dateTime field.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://wiki.developerforce.com/page/Web_Services_API
http://www.salesforce.com/us/developer/docs/api/Content/primitive_data_types.htm

Type

Decimal

Integer

List

String

Description

The Decimal field provides an exact numeric value and you can
arbitrarily size the precision and scale of the value.

The ID field is an alphanumeric field that acts as the primary key
for a specific record associated with an object. The ID value includes
a three-character code that identifies which object the record is
associated with. The ID for a specific record does not change.

For some objects, this field may also be a reference type value,
which contains the ID value for a related record. They are identified
by field names ending in ‘ld’, such as pricelListld. The ID field acts like
foreign keys and their values can be changed using an update() call.

The Integer field contains whole numbers only. There are no digits
after the decimal.

The List field includes a fixed set of values from which you must
select a single value. Picklists are available as drop-down lists. If a
picklist is unrestricted, the APl does not limit entries to only currently
active values.

The String field contains text and may have different length
restrictions based on the data you store in the specific field. For
instance, City may be limited to 50 characters, while AddressLinel is
limited to 255 characters.

Billing APls

Apttus Billing Management APIs are categorized into:
Internal APls

- Billing Services
External APIs

- REST Services
- WSDL Services

Billing Services

Apttus Billing APIs are based on Salesforce APIs and use the same standards and
platforms.

You can invoke Apttus Billing APIs from the following command:

Apttus_Billing.BillingService.<Name of the Function>

where the name of the function is API Name and it parameters.

Here is a list of APIs along with their parameters:

- Creating Credit Memo Documents

- Creating Invoice Documents

- Creating Invoices

- Creating Invoices for Orders

- Previewing Pending Usage Inputs

- Processing Pending Usage Inputs

- Processing Rated Usage Inputs

- Updating Tax Calculations And Breakups on Credit Memos
- Updating Tax Calculations and Breakups on Invoice
- Forecasting Billing Schedules

- Creating Credit and Rebill

- Creating Billing Plans

- Forecasting Billing Schedules and Billing Summatries
- Creating Direct Credit Memos

- Creating Billing Plan with Product Configuration

- Forecasting Billing Schedules for Smart Cart

- Applying a Late Fee

- Cancelling a Late Fee

Creating Credit Memo Documents

createCreditMemoDocuments APl is used to generate credit memo documents.

createCreditMemoDocuments(List<ld> creditMemolds,
String creditMemoTemplateName)

It generates credit memo documents for the given list of credit memo IDs.
You can generate credit memo documents in the following formats:

. PDF
. DOCX
. DOC
. RTF

It accepts a list of Credit Memo IDs and a valid credit memo template name as input. If you
do not specify a valid template name or pass null as a value, Billing Management system
uses the default template provided at the Account or the Account Location.

If you call this APl from a batch or a scheduled job, it can process only one CreditMemo ID.
Otherwise, if you call this API from a non-batch or a non-scheduled job, it can process up
to 10 CreditMemos.

Request

Field Type Required? Description
creditMemolds List <Id> Yes IDs of credit memo
creditMemoTemplateNa | String No Name of the credit memo
me template

Code Sample

Account testAccount = new Account(Name = 'Test Account');
insert testAccount;
CreditMemo__c testCreditMemo = new CreditMemo__c(BillToAccountId__c = testAccount.Id,
CreditAmount__c = 40.0,
Status__c = CreditMemo.STATUS_DRAFT);
insert testCreditMemo;
Apttus__APTS_Template__c cmTemplate = new Apttus__APTS_Template__c(Name = 'Default',
Apttus__IsActive__c = true,
Apttus__Type__c = 'Credit Memo');

insert cmTemplate;

List<Id> cmIdList = new List<Id> {testCreditMemo.Id};
//create Credit Memo Documents

Apttus_Billing.BillingService.createCreditMemoDocuments(cmIdList, cmTemplate.Name);

Creating Invoice Documents

createlnvoiceDocuments API creates invoice documents for a given list of Invoice. It accepts
a list of invoice IDs as input and produces invoice documents for each corresponding invoice
ID. It also accepts Invoice Template Name as a parameter if you want to create

Invoice Documents using a specific template.

You can generate invoice documents in the following formats:

. PDF
. DOCX
. DOC
. RTF

The document is generated in the format set at the Billing Preference in /nvoice Output

Format field.

If you call this APl from a batch or a scheduled job, it can process only one Invoice ID.
Otherwise, if you call this API from a non-batch or a non-scheduled job, it can process up

to 10 Invoices.

There are two ways of creating Invoice Documents:

- Using the default invoice template
- Using a specific invoice template

createlnvoiceDocuments(invoicelDs)

This APl uses the defualt Invoice Template specified on the Account or Account Location.

Request

Field Type Required? Description

invoicelds | List <ld> | Yes List of Invoice Ids
Code Sample

List<ID> invoiceIDs = new List<ID>();
//invoiceIDs.add('a4t1lIQOOOOOH5hM") ;

Apttus_Billing.BillingService.createInvoiceDocuments(invoiceIDs);

createlnvoiceDocuments(invoicelDs,
invoiceTemplateName)

This APl is used to create invoice documents using a specific invoice template.

If you do not specify a valid template name or pass null as a value, Billing Management
System uses the default template specified on the Account or Account Location.

Request

Field Type Required? Description

invoicelds List <ld> Yes List of Invoice Ids
invoiceTemplateName String Yes Invoice Template Name

Code Sample

List<ID> dinvoiceIDs = new List<ID>();
//invoiceIDs.add('a4t1lI00000OH5hM") ;

//String invoiceTemplateName = 'myTestTemplate';
Apttus_Billing.BillingService.createInvoiceDocuments(invoicelDs,

invoiceTemplateName) ;

Creating Invoices

createlnvoices APl is used to create Invoices automatically. It accepts a list of Account IDs
and creates Invoices for each AccountlD.

createlnvoices(billToAccountIDs, invoiceDate,
targetDateTime)

This APl is used to create invoices for given Account IDs. It accepts a Set of Account IDs,
invoiceDate, and targetDateTime as input parameters. It creates invoices for all orders
with billing schedules having status as pending billing and end date less than
targetDateTime. All the new invoices are created with Invoice Date as the value mentioned
in invoiceDate.

Request

Field Type Required? Description
billToAccountlds Set <Id> Yes Set of bill to Account IDs
targetDateTime Datetime Yes Process through Date
invoiceDate Date Yes Invoice Creation Date

Code Sample

Set<ID> billToAccountIDs = new Set<ID>();

Date invoiceDate = Date.newInstance(2017, 1, 1);

Date myDate = Date.newInstance(2017, 1, 1);

Time myTime = Time.newInstance(3, 3, 3, 0);

DateTime targetDateTime = DateTime.newInstance(myDate, myTime);

Apttus_Billing.BillingService.createInvoices(billToAccountIDs, invoiceDate,

targetDateTime);

createlnvoices(billToAccountIDs, options)

This APl is used to create invoices for given Account IDs. It accepts a set of Account IDs and

a class containing invoice creation options. the class contains options that influence the

creation of an Invoice such as Invoice Date, Invoice Through Date and Auto Approve.

Request

Field Type

billToAccountlds Set <Id>

options Apttus_Billing.InvoiceCreati
onOptions

DataObject - Billing.InvoiceCreationOptions

Field Type

abort Boolean
autoApprove Boolean
autoApproveAmount Decimal
autoApproveCreditMemo Boolean

Required? Description

Yes

Yes

Set of bill to Account IDs

Class holding the Invoice
Creation Options

Description
If the process is aborted.

Mandatory Constructor.
IfautoApprovefor Invoice is set to true.

Mandatory Constructor. The amount
provided for auto approval.

Mandatory Constructor. If the
autoApproveCreditMemo is set to true

DataObject - Billing.InvoiceCreationOptions

Field

autoApproveOperator

invoiceDate

invoiceDateType

invoiceRun

invoiceRunResult

numberAccountsProcessed

numberCreditMemos
Genenerated
numberlnvoicesGenenerated
numberOfAccountsThat

GeneratedCreditMemos

numberOfAccountsThat

GeneratedInvoices

numberOfAutoApprovedinvo
ices

numberOfCreditMemos

AutoApproved

Type

String

Date

String

Apttus_Billing

__InvoiceRun__c

Apttus_Billing

__InvoiceRunResult__c

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Description

Mandatory Constructor. The selected

autoApproveOperator such as Greater
than, Less than etc.

Mandatory Constructor. The Invoice
Date.

The Invoice Date Type such as month
or year.

The Invoice Run Object API Name.

The Invoice Run Result Object API
Name.

The number of accounts processed as
part of the Invoice Runs.

The number of Credit Memos
generated.

The number of Invoices generated.
Number of accounts for which Credit

Memos are generated.

Number of accounts for which Invoices
are generated.

Number of Invoices that are auto-
approved.

Number of Credit Memos that are
auto-approved.

DataObject - Billing.InvoiceCreationOptions

Field
numberOfSuppressedinvoice
S

processThruDate

splitinvoicesByOrder

suppressinvoicesAmount

suppressinvoicesOperator

taxCallbackStatus

credtiMemoCreationOption

autoSendEmailforinvoice

autoSendEmailforCreditMe
mo

InvoiceOverrideTemplate

CreditMemoOverrideTempla
te

Type

Integer

Date

Boolean

Decimal

String

String

String

Boolean

Boolean

String

String

Description

Number of Invoices that are
suppressed.

Mandatory Constructor.The Process
through date for invoice

Mandatory Constructor. If Split
Invoices By Order is set to true.

Mandatory Constructor.The amount
till

which you want to suppress invoices.

Mandatory Constructor.
.The selected Suppress
Invoices operator

such as Greater than, Less than etc.

The status of Tax Callback.

The credit memo creation option. For
informaction on credit memo creation
options, refer to Generating Credit
Memos from Invoice Run.

Set it to true to auto-send an email
once the invoice is generated.

Set it to true to auto-send an email
once the credit memo is generated

Name of the invoice template to
override the default invoice template

Name of the credit memo template
name to override the default credit
memo template

https://documentation.conga.com/display/BMSFSPR20UG/Through+Invoice+Runs

Only the following values are currently supported for createlnvoice API:
- autoSendEmailforinvoice: false
- autoSendEmailforCreditMemo: false
InvoiceOverrideTemplate: NULL
- CreditMemoOverrideTemplate: NULL

Code Sample

Set<ID> billToAccountIDs = new Set<ID>();

Date 1invoiceDate = Date.newInstance(2017, 1, 1);
Date processThruDate = Date.newInstance(2017, 1, 1);
Boolean autoApprove = true;

Boolean splitInvoicesByOrder = true;

String autoApproveOperator = 'Greater than';
Decimal autoApproveAmount = 5.00 ;

String suppressInvoicesOperator = 'Less than';
Decimal suppressInvoicesAmount = 2.00;

Boolean autoApproveCreditMemo = true;
Apttus_Billing.InvoiceCreationOptions options = new
Apttus_Billing.InvoiceCreationOptions(
invoiceDate,

processThruDate,

autoApprove,

splitInvoicesByOrder,

autoApproveOperator,

autoApproveAmount,

suppressInvoicesOperator,

suppressInvoicesAmount,

autoApproveCreditMemo) ;

Apttus_Billing.BillingService.createInvoices(billToAccountIDs, options);

Code Sample

Use this code sample to provide credit memo creation options while generating invoices
through the createlnvoices API.

Set<ID> billToAccountIDs = new Set<ID>();

Date invoiceDate = Date.newInstance(2018,1,1);
Date processThruDate = Date.newInstance(2018,9,9);
Boolean autoApprove = true;

Boolean splitInvoicesByOrder = false;

String autoApproveOperator = 'Greater than';
Decimal autoApproveAmount = 20.00 ;

String suppressInvoicesOperator = 'Less than';
Decimal suppressInvoicesAmount = 2.00;

Boolean autoApproveCreditMemo = true;

String credtiMemoCreationOption = 'Single Credit Memo for all Negative Schedules per
Invoice';

Boolean autoSendEmailForInvoice = false;
Boolean autoSendEmailForCreditMemo = false;
String InvoiceOverrideTemplate = NULL;

String CreditMemoOverrideTemplate = NULL;
billToAccountIDs.add('0017FO0000tPMVL");
InvoiceCreationOptions

options = new InvoiceCreationOptions(invoiceDate,
processThruDate,

autoApprove,

splitInvoicesByOrder,

autoApproveOperator,

autoApproveAmount,

suppressInvoicesOperator,
suppressInvoicesAmount,

autoApproveCreditMemo,
credtiMemoCreationOption,
autoSendEmailForInvoice,
autoSendEmailForCreditMemo,
InvoiceOverrideTemplate,
CreditMemoOverrideTemplate);

BillingService.createInvoices(billToAccountIDs,options);

Creating Invoices for Orders

createlnvoicesforOrder APl is used to create invoices for given orders. It accepts a List of
order IDs as input and produces invoices for each order ID.

createlnvoicesForOrder(orderld, targetDateTime,
invoiceDate)

This APl is used to create invoices for given order ID. It accepts the order ID, targetDateTime
and invoiceDate as input parameters. It creates invoices for the billing schedules that have
status as pending billing and end date less than targetDateTime. All the new invoices are
created with Invoice Date as the value mentioned in invoiceDate.

Request

Field Type Required? Description

orderld ID Yes Order Id

targetDateTime Datetime Yes Invoice Process Through Date
invoiceDate Date Yes Invoice Creation Date
Response

Field Type Description
Apttus_Config2__Invoice_c List of Invoice objects Invoices created for each order ID

Code Sample

ID orderID = new ID();

Date invoiceDate = Date.newInstance(2017, 1, 1);

Date myDate = Date.newInstance(2017, 1, 1);

Time myTime = Time.newInstance(3, 3, 3, 0);

DateTime targetDateTime= DateTime.newInstance(myDate, myTime);

List <Invoice_c> invoices =
Apttus_Billing.BillingService.createlnvoicesForOrder (orderID, targetDateTime,

invoiceDate);

createlnvoicesForOrder(orderlD, options)

This APl is used to create invoices for the given order ID. It accepts the order IDs and a class
containing invoice creation options. the class contains options that influence the creation of
an Invoice such as Invoice Date, Invoice Through Date and Auto Approve. It returns a list of

invoices.
Request
Field Type Required? Description
orderld ID Yes Order Id
options Apttus_Billing.InvoiceCreatio | Yes Class holding the Invoice
nOptions Creation Options
Response
Field Type Description
Apttus_Config2__Invoice_c List of Invoice objects Invoices created for each order ID

DataObject - Billing.InvoiceCreationOptions

Field Type Optio Description
n
Type
abort Boolean Outp If the process is aborted.

ut

DataObject - Billing.InvoiceCreationOptions

Field

autoApprove

autoApproveAmou
nt

autoApproveCredit
Memo

autoApproveOper
ator

invoiceDate
invoiceDateType

invoiceRun

invoiceRunResult

numberAccountsPr
ocessed

numberCreditMem
0s

Genenerated

numberinvoicesGen
enerated

Type

Boolean

Decimal

Boolean

String

Date
String

Apttus_Billing_

InvoiceRun__c

Apttus_Billing_

InvoiceRun

Result__c

Integer

Integer

Integer

Optio Description

n
Type

Input

Input

Input

Input

Input
Input

Input

Input/
Outp
ut

Outp
ut

Outp
ut

Outp
ut

Mandatory Constructor. If autoApprove for Invoice
is set to true.

Mandatory Constructor. The amount provided for
auto approval.

Mandatory Constructor. If
autoApproveCreditMemo is set to true

Mandatory Constructor. The selected

autoApproveOperator such as Greater than, Less
than etc.

Mandatory Constructor. The Invoice Date.
The Invoice Date Type such as month or year.

The Invoice Run Object API Name.

The Invoice Run Result Object API Name.

The number of accounts processed as part of the
Invoice Runs.

The number of Credit Memos generated.

The number of Invoices generated.

DataObject - Billing.InvoiceCreationOptions

Field

numberOfAccounts
That

GeneratedCreditM
emos

numberOfAccounts
That

Generatedlnvoices

numberOfAutoApp
rovedlnvoices

numberOfCreditMe
mos

AutoApproved

numberOfSuppress
edInvoices

processThruDate

splitinvoicesByOrd
er

suppressinvoicesA
mount

suppressinvoicesO
perator

taxCallbackStatu
S

Type

Integer

Integer

Integer

Integer

Integer

Date

Boolean

Decimal

String

String

Optio Description

n
Type

Outp
ut

Outp
ut

Outp
ut

Outp
ut

Outp
ut

Input

Input

Input

Input

Outp
ut

Number of accounts for which Credit Memos are
generated.

Number of accounts for which Invoices are
generated.

Number of Invoices that are auto-approved.

Number of Credit Memos that are auto-approved.

Number of Invoices that are suppressed.

Mandatory Constructor. The Process through date
for invoice

Mandatory Constructor. If Split Invoices By Order
is set to true.

Mandatory Constructor. The amount till which
you want to suppress invoices.

Mandatory Constructor.The selected Suppress
Invoices operator

such as Greater than, Less than etc.

The status of Tax Callback.

Code Sample

ID orderID = new ID();

Date invoiceDate = Date.newInstance(2017, 1, 1);
Date processThruDate = Date.newInstance(2017, 1, 1);
Boolean autoApprove = true;

Boolean splitInvoicesByOrder = true;

String autoApproveOperator = 'Greater than';

Decimal autoApproveAmount = 5.00 ;

String suppressInvoicesOperator = 'Less than';
Decimal suppressInvoicesAmount = 2.00;

Boolean autoApproveCreditMemo = true;

Apttus_Billing.InvoiceCreationOptions options = new
Apttus_Billing.InvoiceCreationOptions(
invoiceDate,

processThruDate,

autoApprove,

splitInvoicesByOrder,

autoApproveOperator,

autoApproveAmount,

suppressInvoicesOperator,

suppressInvoicesAmount,

autoApproveCreditMemo) ;

Apttus_Billing.BillingService.createInvoicesForOrder(orderID, options);

Previewing Pending Usage Inputs

previewPendingUsagelnputs APl is used to preview the rating amount of usage inputs
without altering the Billing Schedules, Usage Schedules, and Usage Inputs. You can rate a
maximum of 2000 Usage Inputs at a time.

previewPendingUsagelnputs(Set<ID> usagelnputids)

The APl accepts a set of Usage Input IDs as input. It validates the number of Usage Inputs
to process. If the number of Usage Input Ids entered is less than 2000, it returns a map
containing the rating amount for each Usage Input ID. If the number of Usage Input IDs
given is more than 2000, Billing Management system throws an error.

Request

Field Type Required? Description
usagelnputlds Set <Ild> Yes Set of Usage Input IDs
Response

Field Type Description

mapRatedUsaglnputlds Map Map containing Usage Inputs for each

Usagelnputld

Code Sample

Set<ID> usageInputIDs = new Set<ID>();

Map<ID, Apttus_Billing__UsageInput__c> mapRatedUsagelnputs =

Apttus_Billing.BillingService.previewPendingUsageInputs(usageInputIDs);

for (Apttus_Billing__UsageInput__c usageInput : mapRatedUsageInputs.values()) {
//Use usageInput.Apttus_Billing__RatedAmount__c

Processing Pending Usage Inputs

processPendingUsagelnput APl is used to process Usage Inputs. On completion of the batch
job, the user receives a batch job status email.

You can process the usage inputs in two ways:

- Process all the loaded usage inputs
- Process an explicit set of usage inputs

processPendingUsagelnput()

This APl processes all the usage inputs with status as 'Loaded'.

Code Sample

Apttus_Billing.BillingService.processPendingUsageInput();

processPendingUsagelnput(Set<ID> usagelnputiDs)

This APl processes usage inputs for all the usage inputs IDs with status as ‘Loaded'. It
accepts a Set of Usage Input IDs as input and checks the Usage Input Status for each
Usage Input ID. It processes all the usage inputs with staus as 'Loaded'.

Request

Field Type Required? Description
usagelnpu | Set No Set of usage input IDs
tIDs <ld>

Code Sample

Set<Id> usageInputIlds = new Set<ID>{usageInputl.Id, usageInput2.Id};
Apttus_Billing.BillingService.processPendingUsageInput(usageInputIds);

processPendingUsagelnput(Set<ID> usagelnputiDs,
Boolean processSynchronously)

This APl processes usage inputs for all the usage inputs IDs with status as 'Loaded'. It
accepts a Set of Usage Input IDs as input and checks the Usage Input Status for each
Usage Input ID. It processes all the usage inputs with staus as ‘Loaded"If
processSynchronously is set to true, the usage inputs are processed synchronously without
any batch job. You can process only a maximum of 1000 usage inputs. If
processSynchronously is set to false, the APl will schedule a batch job to process all the
given usage inputs.

Request

Field Type Required? Description
usagelnpu | Set No Set of usage input IDs
tIDs <ld>
processSy | Boole | No Indicates whether to process the
nchronousl = an Usage Inputs synchronously or
y asynchronously. The default value
is false.
Code Sample

// To process Usage Inputs Synchronously

Set<ID> usageInputIDs = new Set<ID>(); //Max it can be 1000 IDs
Apttus_Billing.BillingService. processPendingUsageInput(usageInputIDs, true);
// To process Usage Inputs Asynchronously

Set<ID> usageInputIDs = new Set<ID>(); //Max it can be any number of IDs
Apttus_Billing.BillingService. processPendingUsageInput(usageInputIDs, false);

Processing Rated Usage Inputs

This APl is used to unrate the processed usage input. It also reverts the Amount and
Quantity from Billing Schedules, Usage Schedules, and Revenue Fee Schedules.

processRatedUsagelnput(Set<ID> usagelnputIDs)

It accepts a Set of Usage Input IDs as input. For all entered Usage Input IDs, it unrates all
the usage Inputs and reverts the amount and quantity from the related billing schedules,
usage scheules, and revenue fee schedules. On completion of the batch job, the user
receives a batch job status emaiil.

Request

Field Type Required? Description
usagelnputlDs | Set <ld> | Yes Set of usage input IDs
Code Sample

Set<Id> usageInputIlds = new Set<ID>{usageInputl.Id, usageInput2.Id};
Apttus_Billing.BillingService.processRatedUsageInput(usageInputlds);

Updating Tax Calculations And Breakups on
Credit Memos

updateCreditMemoTaxCalculationsAndBreakups APl calculates Tax Amount and
populates it on the Credit Memo.

updateCreditMemoTaxCalculationsAndBreakups(Set«<|
D> CreditMemolDs, Boolean
autoTransitionFromPendingApprovedToApproved)

This APl calculates Tax Amount and Tax Breakups for credit memos with status as ‘Draft’ or
‘Pending Approved'. After tax computation, it updates the Tax Amount on each credit memo
line item and creates or updates Credit Memo Line Item Tax Breakups. It then calculates
the Total Tax Amount for the credit memo and creates or updates the Credit Memo Tax
Breakups.

If autoTransitionFromPendingApprovedToApproved is set to true, it updates the status of
Credit Memo from Pending Approved to Approved.

The billing administrator must register a Tax Callback class for
updateCreditMemoTaxCalculationsAndBreakups API to work. For details on how to
register a Tax Callback class, refer to Custom Settings for Tax.

Request

Field Type

creditMemolDs Set <ld>

autoTransitionFromPending | Boolean
ApprovedToApproved

Code Sample

Required?

Yes

Yes

Description

Set of Credit Memo Ids

If set to true, the APl updates the
status of Credit Memo from
Pending Approved to Approved.

If set to false, the credit memo
status is not updated.

The code sample below helps you calculate and fetch Tax Amount for credit memos.

Set<ID> creditMemoIDs = new Set<ID>();

//[{creditMemos[0].Id, creditMemos[1].Id};]
Apttus_Billing.BillingService.updateCreditMemoTaxCalculationsAndBreakups(creditMemoID

s, true);

Updating Tax Calculations and Breakups on

Invoice

updatelnvoiceMemoTaxCalculationsAndBreakups APl calculates Tax Amount and

populates it on the Invoice.

updatelnvoiceTaxCalculationsAndBreakups(Set<ID>

Invoicelds, Boolean

autoTransitionFromPendingApprovedToApproved)

This APl calculates Tax Amount and Tax Breakups for invoices with status as 'Draft’ or
'Pending Approved'. After tax computation, it updates the Tax Amount on each invoice line

item and creates or updates Invoice Line Item Tax Breakups. It then calculates the Total
Tax Amount for the invoice and creates or updates the Invoice Tax Breakups.

If autoTransitionFromPendingApprovedToApproved is set to true, it updates the status of
the invoice from Pending Approved to Approved.

The billing administrator must register a Tax Callback class for
updatelnvoiceTaxCalculationsAndBreakups APl to work. For details on how to
register a Tax Callback class, refer to Custom Settings for Tax.

Request

Field Type Required? Description

invoicelDs List <Id> Yes List of Invoice Ids
autoTransitionFromPending | Boolean Yes If set to true, the APl updates the
ApprovedToApproved status of the Invoice from

Pending Approved to Approved.

If set to false, the invoice status
is not updated.

Code Sample

The code sample below helps you calculate and fetch Tax Amount for invoices.

Set<ID> [invoiceIDs = new Set<ID>();
invoiceIDs.add('invoicelID'")
Apttus_Billing.BillingService.updateInvoiceTaxCalculationsAndBreakups(invoicelDs,true

)

Forecasting Billing Schedules

Forecast Billing Schedules APl is used to generate and display forecast billing schedules for
a Quote/Proposal. This APl accepts the proposal ID as input parameter and returns the list

of forecast billing schedules.

ForecastBillingSchedules
retriveForecastedBillingSchedules(ProposallD)

Forecast Billing Schedules APl is used to generate and display forecast billing schedules for
a Quote/Proposal. This APl can be invoked by the implementation team on acceptance of

the quote/proposal.

If the forecast billing schedules are already generated for the given proposal and no
changes are made to the product configurations, the APl displays the existing forecast
billing schedules. If you perform any asset-based operations or change the product
configuration, the generated forecast billing schedules are deleted and new forecast billing
schedules are generated to reflect the changes made to the product or the asset.

Forecast billing schedule functionality is not supported for:
- Evergreen products
- Quote/Proposal associated with a billing plan
- Informational line items of bundle and option products

Request

Field Type Required? Description

ProposallD ID Yes The proposal ID
Response

Field Type Description

forecastedbillingschedules List List of forecast billing schedules generated

for the given proposal ID.

If the Forecasted Billing Schedules have already been created and are "current" then
return the existing

* Forecasted Billing Schedules, otherwise delete the existing "out of sync"
Forecasted Billing Schedules and to

* the following.

*

* For each Line Item in the "active" Product Configuration create an in-memory
Order Line Item (and other

* relevant in-memory objects) and call the BSM (Billing Schedule Manager) to
generate the resultant set of

* _forecasted_ Billing Schedules. When finished persist the aggregate list of
Forecasted Billing Schedules and

* and return them

*

* @param Proposalld The Id of the Proposal (Quote) to persist and retrieve
Forecasted Billing Schedules for.

*

* @return The 1list of persisted Forecasted Billing Schedules, which will be sorted
by "Ready for Invoice Date".

*/

global static List<ForecastedBillingSchedule__c>
retrieveForecastedBillingSchedules(ID Proposalld);

Creating Credit and Rebill

Credit and Rebill functionality allow you to credit an entire invoice and rebill it.

createCreditRebill(invoiceld, autoApproveCreditMemo)

This APl accepts the invoice ID and the option to Auto Approve the credit memo as input

parameters.

Request
Field Type Required? Description

invoiceld ID Yes ID of the invoice

Request

Field Type Required? Description

autoApproveCreditMemo | Boolean Yes If set to true, credit memos are
auto-approved

The APl returns a Map<String, Value> as a response parameter.

Response

Field Type Description

Result | Map | The result map contains the success string and a value

If the APl executes successfully, the value contains the following keys:

+ success - set to true
- creditMemold - the ID of the created credit memo

If the APl is not executed successfully, the value contains the following keys:

- success - set to false
- errorMessage - contains the error message
- stackTrace - contains the stackTrack of the API call

Code Sample

/**xcreateCreditRebill This method creates a Credit Memo

@param ‘invoiceld

The 1id of the dinvoice which has to be credited and rebilled.

@param autoApproveCreditMemo

Tells whether the credit memo should to be approved during creation

*

@return

Returns a map. If creation succeeds, returns success=true and creditMemold

*

In case of error, success=false, errormessage and stackTrace

*/

global static Map<String, Object> Apttus_Billing.BillingService.createCreditRebill(Id
invoiceld,Boolean autoApproveCreditMemo);

Creating Billing Plans

createBillingPlan APl is used to create a billing plan. It creates a billing plan and billing
plan line items for the given proposal ID.

createBillingPlan(proposalld,billingPlanTemplateld,pr
oposallineltemlds)

This APl accepts Proposal ID, Billing Plan Template ID, and Proposal Line Item IDs as input
parameters. It creates a billing plan and billing plan line items for the given proposal ID.
Created billing plan is applied to the list of provided proposal IDs. If you do not provide any
proposal line item IDs as input parameters, the created billing plan is applied to all the
proposal line items. This API skips the proposal line items that are already linked to

a billing plan.

For a billing plan template with plan type as Milestones, createBillingPlan APl also creates

milestones.
Request
Field Type Required? Description
proposallD ID Yes ID of the proposal
billingPlanTemplateld ID Yes IDof the Billing Plan

Template

proposalLineltemlids Set <Id> No Set of proposal Ids
Response
Field Type Description
isSuccess Boolean Returns true if the APl is executed correctly
errorMessage String Error Message if the APl is not executed

successfully.

Response

Field Type Description
billingPlanld ID Id of the created Billing Plan
Code Sample

Id proposalld = 'a2G1NOOOOO2RpRZUAG';

Id billingPlanTemplateId = 'a3D1NOOOOOOblZc';

Set<Id> proposallLineItemIds = new Set<Id>('a2EINOOOOOldHox', 'a2EINOOOOOleHox');
Apttus_Billing.BillingService.BillingPlanAPIResponse response;

// Call API without proposal line -ditem ids parameter

response = Apttus_Billing.BillingService.createBillingPlan(proposalld,
billingPlanTemplateld);

// Call API with proposal line item ids parameter
response = Apttus_Billing.BillingService.createBillingPlan(proposalld,
billingPlanTemplateId, proposallLineItemIds);

createBillingPlan APl is not supported for Evergreen Billing and Usage-based
products.

Forecasting Billing Schedules and Billing
Summaries

Forecast Billing Schedules and Summaries APl is used to generate and display forecast
billing schedules and forecast billing summaries for a Quote/Proposal. This APl accepts the
proposal ID and the option to extend the end date with renewal term as input parameters
and returns the list of forecast billing schedules and forecast billing summaries.

ForecastResults
retriveForecastedBillingSchedulesAndSummaries(Propo
sallD, extendEndDateWithRenewalTerm)

Forecast Billing Schedules APl is used to generate and display forecast billing schedules
and forecast billing summatries for a Quote/Proposal. This APl can be invoked by the

implementation team on acceptance of the quote/proposal.

If the forecast billing schedules or forecast billing summaries are already generated for the
given proposal and no changes are made to the product configurations, the APl displays
the existing forecast billing schedules. If you perform any asset-based operations or
change the product configuration, the generated forecast billing schedules and billing
summaries are deleted and new forecast billing schedules and billing summaries are
generated to reflect the changes made to the product or the asset.

Forecast billing schedule functionality is not supported for:
- Evergreen products
- Quote/Proposal associated with a billing plan
- Informational line items of bundle and option products

Request

Field Type Required? Description

proposallD 1D Yes The proposal ID
extendEndDateWithRene | Boolean Yes If extendEndDateWithRenewal is
wal set to true, then for each

proposal line item with Auto-
Renew set to True and the Auto
Renewal Type set to Fixed. the
end date is extended based on
the renewal term.

Response

Field

forecastedSchedules

forecastedSummaries

Type

List

List

Description

List of forecast billing schedules generated for
the given proposal ID.

List of forecast billing summatries generated
for the given proposal ID.

/**
* Class used to support forecasting of Billing Schedules and Invoices.
*/

global with sharing class ForecastedResults {

global List<ForecastedBillingSchedule__c> forecastedSchedules { get; private
set; }

public List<ForecastedBillingSummary__c> forecastedSummaries { get; private
set; }

public ForecastedResults() {

this.forecastedSchedules new List<ForecastedBillingSchedule__c>();

this.forecastedSummaries new List<ForecastedBillingSummary__c>();

/**

* Create the 1list of Forecasted Billing Schedules by leveraging the BSM to
"forecast" each of

* the Proposal Line Items belonging to the "active" Product Configuration of the
specified Proposal.

* From the Forecasted Billing Schedules generate the 1list of Forecasted Billing
Summaries.

*

* If the Forecasted Billing Schedules/Summaries have already been created and are
"current",

* return the existing forecasted Schedules and Summaries. Otherwise delete the
existing

* "out of sync" forecasted Schedules and Summaries and use the Product Configuration
of the

* specified Proposal to re-generate (and persist) them.

*

* @param Proposalld The Id of the Proposal (Quote) to use when retrieving (and
possibly

* generating) the lists of forecasted Billing Schedules and Summaries.

* @param extendEndDateWithRenewalTerm If the flag is true, then extend the End Date

* (based on the Renewal Term) for all Line Items that have Auto Renew set to True
and

* the Auto Renewal Type set to "Fixed".

*

* @return The list of persisted forecasted Billing Schedules and Billing Summaries.

The forecasted

* Billing Schedules will be sorted by "Ready for Invoice Date" and the forecasted

Billing Summaries

* will be sorted by Invoice Date and Summary Number.

*/
global static ForecastedResults retrieveForecastedBillingSchedulesAndSummaries (

ID proposalld, Boolean extendEndDateWithRenewalTerm) {

return new ForecastedResults();

Creating Direct Credit Memos

createDirectCreditMemos APl is used to create credit memos for a list of invoices.

directCreditMemoResult
createDirectCreditMemos(directCreditMemolnputs)

This APl is used to create credit memos for an invoice. It accepts a Set of Account IDs,
invoiceDate, and targetDateTime as input parameters. For each DirectCreditMemolnput, a
credit memo is created in the Draft Status. You can auto-approve a credit memo line item
and auto-apply it to an invoice. If you have a Tax Callback registered, this APl also
calculates Tax and creates Tax breakups for a credit memo Lline item.

Request - DirectCreditMemolnput

Field Type Requir @ Description
ed?
invoiceld ID Yes The Id of the approved Invoice the credit will be

drawn from.

reasonCode String Yes The reason for creating the Credit Memo. Must
be null or a valid pick-list
value for the Reason Code field declared of the
Credit Memo object.

Request - DirectCreditMemolnput

Field Type Requir Description
ed?
isFullCredit Boolean No If you set isFullCredit as true, the entire

available credit amount of all the invoice line
items is set as the credit amount.

If you set the value as false, credit memo
amount is calculated based on the values you
provide in creditMemoLineltemInputs field.

By default, it is set as false.

creditMemolLin | List<DirectCreditMe | No The list of inputs for each Credit Memo Line
eltemlnputs moLineltemInput> ltem to create.

This parameter is ignored if you set isFullCredit
as True.

autoApprove Boolean No If true the Credit Memo will be transitioned to
Approved otherwise the
Credit Memo will be created with a status of
Draft. A value of null will
be considered as false.

autoApplyCred | Boolean No This flag is only relevant when the Auto
itMemo Approve option is true. If both
options are true the newly created direct
Credit Memo will be applied
to the Invoice, the credit was drawn from. A
value of null will be considered as false.

Templateld ID No The Id of the Credit Memo template to use
when creating the Credit Memo
attachment. This parameter is optional and
can be null.

calculateTax Boolean Yes If this flag is true Tax will be calculated for a
non tax-exempt Asset. If false,
no tax will be calculated.

Ensure that you provide value for either isFullCredit or creditMemoLineltemInputs
parameters. If you leave both the fields as null, the APl returns an error.

Request - CreditMemoLineltemInput

Field Ty Requi Description
pe red?
invoiceLin | ID | Yes The Id of the affiliate Invoice Line Item. It must be a child of the specified
eltemld Invoice.
creditAmo | De | Yes The amount of credit to draw from the corresponding Invoice Line Item.
unt Ci The amount must be a positive number and cannot exceed the
m available credit of the corresponding Invoice Line Item.
al
Response
Field Type Description
DirectCreditMemoResult List A result parameter is returned for each

request parameter.

Create Direct Credit Memo API returns an error if:

- The specified invoice does not exist.

- The status of your specified invoice is not Approved.

- Your specified reason code is invalid. Reason code can be null or one of the picklist
values declared in the Reason Code field of Credit Memo object.

Create Direct Credit Memo API does not support the following reason codes:
- Wallet Application
- Credit & Rebill

- Credit Amount is negative or O.

- Template ID does not exist.

- Template Type is other than Credit Memo.

- Specified Invoice Line Item does not exist.

- Specified Invoice Line Item does not belong to the specified invoice.

- Invoice Line Item is already referenced in more than one Credit Memo Line Item.
- Credit Amount is greater than the Available Credit.

Code Sample 1

// Set Credit Memo input parameters

List<DirectCreditMemoInput> creditMemoInputs = new List<DirectCreditMemoInput>();
List<DirectCreditMemoInput.DirectCreditMemoLineItemInput> creditMemolLineItemInputs;
Set<Id> dinvoicelds = new Set<Id>

{'a2V1iNOOEO02QbuC', 'a2V1INOOOOO2QbuM'}

>

List<Invoice__c> invoices = SELECT Id, Status__c, (Select Id, Amount__c From
InvoicelLineItems__r) FROM Invoice__c Where Id IN:invoicelds;

Id templateId = 'alblNOEOOO3QCS';

Decimal creditAmount = 100.00;

String reasonCode = null;

for(Invoice__c 1invoice : invoices){
creditMemoLineItemInputs = new
List<DirectCreditMemoInput.DirectCreditMemoLineIltemInput>();

for (InvoicelLineItem_c 1invoicelLineltem : +invoice.InvoicelLinelItems_r)

{ creditMemoLineItemInputs.add(new
DirectCreditMemoInput.DirectCreditMemoLineItemInput(invoicelLineItem.Id,
creditAmount)); }

creditMemoInputs.add(new DirectCreditMemoInput(invoice.Id,

reasonCode,

true,

true,

templateld,

true,

creditMemoLineItemInputs));

}

List<DirectCreditMemoResult> actualCreditMemoResults =

Apttus_Billing.BillingService.createDirectCreditMemos(creditMemoInputs);
System.debug('actualCreditMemoResults========================
+actualCreditMemoResults);

Code Sample 2 - To provide Full Credit

Apttus_Billing.DirectCreditMemoInput dcm = new
Apttus_Billing.DirectCreditMemoInput();

dcm.autoApplyCreditMemo = true;

dcm.autoApprove = true;

dcm.calculateTax = true;

dcm.creditMemoLineItemInputs = null;

dcm.invoiceId = 'a5F5x000001hqtd’';

dcm.isFullCredit = true;

dcm.reasonCode = 'Refund';

dcm. templateId = 'a03f2000001lccG2';
List<Apttus_Billing.DirectCreditMemoInput> creditMemoInputs = new
List<Apttus_Billing.DirectCreditMemoInput>();

creditMemoInputs.add(dcm);
List<Apttus_Billing.DirectCreditMemoResult> actualCreditMemoResults =

Apttus_Billing.BillingService.createDirectCreditMemos(creditMemoInputs);

Creating Billing Plan with Product Configuration

createBillingPlanWithProductConfiguration APl is used to create a billing plan for the
product configurations. This APl is used to creates a billing plan without the quote flow,
directly from the cart page. It creates a billing plan with billing plan line items. For plan
type as Milestone, the APl also creates milestones.

createBillingPlanWithProductConfiguration(productCo
nfigurationld,billingPlanTemplateld, lineltemids)

This APl accepts Product Configuration ID, Billing Plan Template ID, and a Set of Line Item
IDs as input parameters. It creates a billing plan and billing plan line items for the given
proposal ID. Created billing plan is applied to the list of provided Line Item IDs. If you do
not provide any line item IDs as input parameters, the created billing plan is applied to all
the line items.

For a billing plan template with plan type as Milestones,
createBillingPlanWithProductConfiguration APl also creates milestones.

Request

Field Type Required? Description

productConfiguraionID ID Yes ID of the Product
Configuration

billingPlanTemplateld ID Yes ID of the Billing Plan
Template
lineltemlds Set <ld> No Set of Line Item Ids

Response: BillingPlanAPIResponse

Field Type Description
isSuccess Boolean Returns true if the APl is executed correctly
errorMessage String Error Message if the APl is not executed
successfully.
billingPlanld ID Id of the created Billing Plan
Code Sample

Id productconfigurationId = 'a2G1INOOOOO2RpRZUAO';
Id billingPlanTemplateId = 'a3D1NOGOOOOblZc';
Set<Id> LineItemIds = new Set<Id>('a2EINOOOOOldHox', 'a2EINOOOOOleHox');

response =
Apttus_Billing.BillingService.createBillingPlanWithProductConfiguration(productconfig
uratlId, billingPlanTemplateld);

// Call API with 1line item ids parameter

response =
Apttus_Billing.BillingService.createBillingPlanWithProductConfiguration(productconfig
uratlId, billingPlanTemplateId, LineItemIds);

createBillingPlanWithProductConfiguration APl is not supported for Evergreen Billing
and Usage-based products.

Forecasting Billing Schedules for Smart Cart

forecastBilling APl is used to generate forecast billing schedules for Smart Cart. A smart
cartis a cart with a large number of product line items. This APl run in the asynchronous
mode. This APl accepts the proposal ID and the option to extend the end date with renewal

term as input parameters.

|d forecastBilling(ProposallD,
extendEndDateWithRenewalTerm)

Forecast Billing Schedules APl is used to generate forecast billing schedules, forecast billing
summaries, forecast options, and forecast line item options for a large number of product
line items. This APl can be invoked by the implementation team after the cart is finalized.

forecastBilling APl submits an asynchronous batch job to delete all the existing forecast
billing schedules and returns the ID of the submitted batch job as a response parameter.
After deleting the existing forecast data, forecastBilling APl submits a batch job to
generate forecast billing data for all the line items associated with the given proposal ID.

Forecast billing schedule functionality is not supported for:
- Quote/Proposal associated with a billing plan
- Informational line items of bundle and option products

Request
Field Type Required? Description

proposallD ID Yes The proposal ID

Request

Field Type Required? Description
extendEndDateWithRen | Boolean Yes If extendEndDateWithRenewal is set
ewal to true, then for each proposal line

item with Auto-Renew set to True
and the Auto-Renewal Type set to
Fixed, the end date is extended
based on the renewal term. If you
pass a null value, the APl considers it
as a false value.

Response
Field Type Description
apexJobld ID Id of the batch job submitted to delete the forecast

billing schedules.

/**
* For a given proposal, delete exising forecast billing data, if any, and regenerate
the forecast data.

* This API supports the forecasting for samrt cart.

*

* @param proposalld The proposal Id for which the forecasting needs to be done.

* @param extendEndDateWithRenewalTerm States whether to generate forecasting with
current term or extend it with renewal term.

* A 'null' will default to 'false' value

*

*x @return The ID of the new batch job (AsyncApexJob).

*

*x @note The API functionality involves two batch jobs, one for deleting the existing
forecast data,

*x and another chained batch 1is generating the new forecast data.

* Hence, the Id returned by the API is of the first deletion batch job.

*/

global static Id forecastBilling(Id proposalld, Boolean extendEndDateWithRenewalTerm)

{
return DeleteForecastedBillingBatchJob.deleteAndRegenerateForecastData(proposalld,
extendEndDateWithRenewalTerm) ;

}

Applying a Late Fee

With applylLateFeesToInvoice API, you can charge your customers a Late Fee, if they do
not complete their payment by the Due Date.

invoiceLateFeeResultList
applyLateFeesTolnvoice(lateFeelnputs)

applylLateFeesToInvoice APl accepts Invoice ID and Late Fee ID as input parameters. This
API calculates the late fee amount and adds the calculated amount to the Total Due
Amount of the specified invoice Id. A Destinated Related A/R Transaction record is created
for the late fee applied on the invoice. applylLateFeesToInvoice APIreturns
ApplylnvoiceLateFeeResult object as response parameters.

Request: ApplylnvoiceLateFeeAmount

Field Type Required?
invoiceld ID Yes
lateFeeld ID Yes

Response: ApplylnvoiceLateFeeResult

Field Type
isSuccess Boolean
errorMessage String
lateFeeAmount Decimal
relatedA/RTransactionld ID

Description

The invoice Id to apply the late fee.

Id of the late fee to calculate penalty
amount for the specified invoice

Description

Value is set as true if the Late Fee is applied
successfully.

Value is set as false if the APl encounters an
error.

If the APl execution false, errorMessage
string contains a detailed error message.

Value is set as the calculated late fee
amount.

Value is set as the ID of the created Related
A/R Transaction record

Apttus_Billing__LateFee__c lateFee = new Apttus_Billing__LateFee__c(
Name = 'Test Late Fee',
Apttus_Billing__LateFeeValue__c = 100,
Apttus_Billing__LateFeeType__c = 'Amount'

)

insert lateFee;

List<Apttus_Billing.CustomClass.ApplyInvoicelLateFeeInput> lateFeeInputs = new
List<Apttus_Billing.CustomClass.ApplyInvoicelLateFeeInput>();
Apttus_Billing.CustomClass.ApplyInvoicelLateFeeInput lateFeeInputl = new
Apttus_Billing.CustomClass.ApplyInvoicelLateFeeInput(invoiceld, lateFee.Id);
lateFeeInputs.add(lateFeeInputl);
List<Apttus_Billing.CustomClass.ApplyInvoicelLateFeeResult> invoicelLateFeeResultList =
Apttus_Billing.BillingService.applyLateFeesToInvoices(lateFeeInputs);

Cancelling a Late Fee

With cancelInvoicelateFees API, you can cancel a late fee incorrectly applied to an

invoice.

cancellnvoiceLateFeeResult
cancellnvoiceLateFees(cancelLateFeelnputs)

cancellnvoicelateFees APl accepts Related A/R Transaction ID and Description as input
parameters. This APl cancels the late fee and deducts the late fee amount from the Total
Due Amount of the Invoice. A Destinated Related A/R Transaction record is created for the
canceled late fee. cancelInvoicelateFees APIreturns cancellnvoiceLateFeeResult object

as a response parameter.

Request: cancelLateFeelnputs
Field Type Required? Description

relatedLateFeeTransactionl | ID Yes ID of the Related A/R
d Transaction record

Request: cancelLateFeelnputs

Field Type Required? Description

description String Yes Reason to cancel the late fee.

Response: cancellnvoiceLateFeeResult

Field Type Description

isSuccess Boolean Value is set as true if the Late Fee is
canceled successfully.

Value is set as false if the APl encounters an
error.

errorMessage String If the APl execution false, errorMessage string
contains a detailed error message.

invoiceld ID Value is set as the ID of the invoice for which
the late fee was canceled successfully.

cancellationTransactionld ID Value is set as the ID of the Related A/R
Transaction created record the cancellation
of late fee

List<CustomClass.CancelInvoicelLateFeeInput> cancellLateFeeIlnputs = new

List<CustomClass.CancelInvoicelLateFeeInput>();

CustomClass.CancelInvoicelLateFeeInput cancelInputl = new

CustomClass.CancelInvoicelateFeeInput('a5p2v000000dpZ3', 'test description');
cancellLateFeeInputs.add(cancelInputl);

List<CustomClass.CancellInvoicelLateFeeResult> cancelInvoicelLateFeeResult =

BillingService.cancelInvoicelLateFees(cancellLateFeeInputs);

REST Services

Apttus Billing Management offers the following REST Services:

- Creating Invoices for Orders - REST Service
- Creating Invoices - REST Service
- Processing Pending Usage Inputs - REST Service

Creating Invoices for Orders - REST Service

createlnvoicesforOrder APl is used to create invoices for given orders. It accepts a List of
order IDs as input and produces invoices for each order ID.

createlnvoicesForOrder(orderld, targetDateTime,
invoiceDate)

This REST Service is used to create invoices for given order IDs. It accepts a list of order ID,
targetDateTimeandinvoiceDate as input parameters.

It creates invoices for billing scheules that have status as pending billing, and
ReadyForlnvoiceDate less than the targetDate. All the new invoices are created with
Invoice Date as the value mentioned in invoiceDate.

Code Sample

MainClass.cs

namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{

SalesforceClient client = new SalesforceClient();

client.

client.

client

client.
client.

client.

client.

SalesforceClient.cs

Username = "[yourUsername]";

Password = "[yourPassword]";

.Token = "[Token]";

ClientId = "[ConnectedApp_ClientID]";
ClientSecret = "[ConnectedApp_SecretKey]";
Login();

createlInvoiceForOrder();

using Newtonsoft.Json;

using System;

using System.Collections.Gener1ic;

using System.Net;

using System.Net.Http;

using System.Net.Http.Headers;

using System.Text;

namespace ConsoleApplicationl

{

public class SalesforceClient

{

private const string LOGIN_ENDPOINT = "https://test.salesforce.com/services/

oauth2/token";

private const string API_ENDPOINT = "/services/apexrest/";

public string Username { get; set; }

public string Password { get; set; }

public string Token { get; set; }

public string ClientId { get; set; }

public string ClientSecret { get; set; }
public string AuthToken { get; set; }
public string InstanceUrl { get; set; }

static SalesforceClient()

{
// SF requires TLS 1.1 or 1.2
ServicePointManager.SecurityProtocol = SecurityProtocolType.Tlsl2 |

SecurityProtocolType.Tlsll;
}

public void Login()
{
String jsonResponse;

using (var client = new HttpClient())

{
var request = new FormUrlEncodedContent(new Dictionary<string,
string>
{
{"grant_type", "password"},
{"client_id", ClientId},
{"client_secret", ClientSecret},
{"username", Username},
{"password", Password + Token}
}
)3
request.Headers.Add ("X-PrettyPrint", "1");
var response = client.PostAsync(LOGIN_ENDPOINT, request).Result;
jsonResponse = response.Content.ReadAsStringAsync().Result;
}

Console.Write(jsonResponse);

var values = JsonConvert.DeserializeObject<Dictionary<string,
string>>(jsonResponse);
AuthToken = values["access_token'"];

InstanceUrl = values["instance_url"];

public void createInvoiceForOrder()

{
using (var client = new HttpClient())

{

string restRequest = InstanceUrl + API_ENDPOINT + "Apttus_Billing/
CreateInvoicesForOrder/vl/";

string requestMessage = "{\"orderId\":\"a2nWOOOOOO10D2G\",
\"targetDate\":\"2018-03-03\", \'"invoiceDate\":\"2018-03-03\"}";
HttpContent content = new StringContent(requestMessage,

Encoding.UTF8, "application/json");

HttpRequestMessage request = new HttpRequestMessage (HttpMethod.Post,
restRequest);

request.Headers.Add ("X-PrettyPrint", "1");

request.Headers.Add ("Authorization", "Bearer " + AuthToken);

request.Headers.Accept.Add (new
MediaTypeWithQualityHeaderValue("application/json"));

request.Content = content;

var response = client.SendAsync(request);

string result = response.Result.Content.ReadAsStringAsync().Result;

Console.Write(result);

Console.ReadLine();

Input Format

Internally the input format is converted to JSON as follows:

{
"orderId" : "a2nWOOOOOO1OD2A",
"invoiceDate" : "2018-03-03",
"targetDate" : "2018-03-03"

}

Output Format

Invoice is created for the given Order ID using the Invoice Date and targetDate parameters.
Invoice is created only for billing scheules that have status as pending billing, and
ReadyForinvoiceDate less than the targetDate.

[{
"attributes" : {

"type" : "Apttus_Billing__Invoice__c",
"url" : "/services/data/v31.0/sobjects/Apttus_Billing__Invoice__c/
a5zWO0000005EYtIAE"
}s
"Id" : "a5zWOOOOOOO5EYtIAE",
"Name" : "INV-00000012",
"Apttus_Billing__Type__c" : "Standard",
"Apttus_Billing__TotalInvoiceAmount__c" : 2400.00000,
"Apttus_Billing__ShipToAccountId__c" : "001WOOOOOOLSAJHIA5",
"Apttus_Billing__InvoiceDate__c" : "2018-03-03T12:39:23.000+0000",
"Apttus_Billing__DueDate__c" : "2018-03-03T12:39:23.000+0000",
"Apttus_Billing__BillToAccountId__c" : "OO1WOOOOOOLSAJHIA5"
}]

Creating Invoices - REST Service

createlnvoices APl is used to create Invoices automatically. It accepts a list of Account IDs
and creates Invoices for each AccountlD.

createlnvoices(billToAccountIDs, invoiceDate,
targetDateTime)

This APl is used to create invoices for given Account IDs. It accepts a list of Account IDs,
invoiceDate, and targetDateTime as input parameters. It creates invoices for billing
scheules that have status as pending billing, and ReadyForinvoiceDate less than

the targetDate. All the new invoices are created with Invoice Date as the value mentioned
in invoiceDate.

Code Sample

MainClass.cs

namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{

SalesforceClient client = new SalesforceClient();

client.

client.

client

client.
client.

client.

client.

SalesforceClient.cs

Username = "[yourUsername]";

Password = "[yourPassword]";

.Token = "[Token]";

ClientId = "[ConnectedApp_ClientID]";
ClientSecret = "[ConnectedApp_SecretKey]";
Login();

createlnvoice();

using Newtonsoft.Json;

using System;

using System.Collections.Gener1ic;

using System.Net;

using System.Net.Http;

using System.Net.Http.Headers;

using System.Text;

namespace ConsoleApplicationl

{

public class SalesforceClient

{

private const string LOGIN_ENDPOINT = "https://test.salesforce.com/services/

oauth2/token";

private const string API_ENDPOINT = "/services/apexrest/";

public string Username { get; set; }

public string Password { get; set; }

public string Token { get; set; }

public string ClientId { get; set; }

public string ClientSecret { get; set; }
public string AuthToken { get; set; }
public string InstanceUrl { get; set; }

static SalesforceClient()

{
// SF requires TLS 1.1 or 1.2
ServicePointManager.SecurityProtocol = SecurityProtocolType.Tlsl2 |

SecurityProtocolType.Tlsll;
}

public void Login()
{
String jsonResponse;

using (var client = new HttpClient())

{
var request = new FormUrlEncodedContent(new Dictionary<string,
string>
{
{"grant_type", "password"},
{"client_id", ClientId},
{"client_secret", ClientSecret},
{"username", Username},
{"password", Password + Token}
}
)3
request.Headers.Add ("X-PrettyPrint", "1");
var response = client.PostAsync(LOGIN_ENDPOINT, request).Result;
jsonResponse = response.Content.ReadAsStringAsync().Result;
}

Console.Write(jsonResponse);

var values = JsonConvert.DeserializeObject<Dictionary<string,
string>>(jsonResponse);
AuthToken = values["access_token'"];

InstanceUrl = values["instance_url"];

public void createlnvoice()

{
using (var client = new HttpClient())

{

string restRequest = InstanceUrl + API_ENDPOINT + "Apttus_Billing/
CreateInvoices/vl/";

string requestMessage = "{\"billToAccountIds\":[\"001WO00000eclP8\",
\"001We00000dkQ2c\", \"OO1WOOOOOOLSAJIH\"], \"targetDate\":\"2018-03-03\",
\"invoiceDate\":\"2018-03-03\"}";

HttpContent content = new StringContent(requestMessage,

Encoding.UTF8, "application/json");

HttpRequestMessage request = new HttpRequestMessage(HttpMethod.Post,
restRequest) ;

request.Headers.Add ("X-PrettyPrint", "1");

request.Headers.Add ("Authorization", "Bearer " + AuthToken);

request.Headers.Accept.Add (new
MediaTypeWithQualityHeaderValue("application/json"));

request.Content = content;

var response = client.SendAsync(request);

string result = response.Result.Content.ReadAsStringAsync().Result;

Console.Write(result);

Console.ReadlLine();

Input Format

Internally the input format is converted to JSON as follows:

{
"billToAccountIds" : ["001WOOO000eclP8", "001WO00000dkQ2c", "OO1WOOOOOOLSAIH"]
)
"targetDate" : "2018-03-03",
"invoiceDate" : "2018-03-03"
}
Output

Invoice is created for the given list of Account IDs using the Invoice Date and targetDate
parameters. Invoice is created only for billing scheules that have status as pending billing,
and ReadyForinvoiceDate less than the targetDate. This APl does not return any output.

Processing Pending Usage Inputs - REST Service

processPendingUsagelnput APl is used to process Usage Inputs.

processPendingUsagelnput()

This APl processes all the usage inputs with status as 'Loaded'. On completion of the batch

job, the user receives a batch job status emaiil.

Code Sample

MainClass.cs

namespace ConsoleApplicationl

{

class Program

{

static void Main(string[] args)

{

SalesforceClient client = new SalesforceClient();

client.

client.

client

client.
client.

client.

client.

SalesforceClient.cs

Username = "[yourUsername]";

Password = "[yourPassword]";

.Token = "[Token]";

ClientId = "[ConnectedApp_ClientID]";
ClientSecret = "[ConnectedApp_SecretKey]";
Login();

processPendingUsageInputs();

using Newtonsoft.Json;

using System;

using System.Collections.Gener1ic;

using System.Net;

using System.Net.Http;

using System.Net.Http.Headers;

using System.Text;

namespace ConsoleApplicationl

{

public class SalesforceClient

{

private const string LOGIN_ENDPOINT = "https://test.salesforce.com/services/

oauth2/token";

private const string API_ENDPOINT = "/services/apexrest/";

public string Username { get; set; }

public string Password { get; set; }

public string Token { get; set; }

public string ClientId { get; set; }

public string ClientSecret { get; set; }
public string AuthToken { get; set; }
public string InstanceUrl { get; set; }

static SalesforceClient()

{
// SF requires TLS 1.1 or 1.2
ServicePointManager.SecurityProtocol = SecurityProtocolType.Tlsl2 |

SecurityProtocolType.Tlsll;
}

public void Login()
{
String jsonResponse;

using (var client = new HttpClient())

{
var request = new FormUrlEncodedContent(new Dictionary<string,
string>
{
{"grant_type", "password"},
{"client_id", ClientId},
{"client_secret", ClientSecret},
{"username", Username},
{"password", Password + Token}
}
)3
request.Headers.Add ("X-PrettyPrint", "1");
var response = client.PostAsync(LOGIN_ENDPOINT, request).Result;
jsonResponse = response.Content.ReadAsStringAsync().Result;
}

Console.Write(jsonResponse);

var values = JsonConvert.DeserializeObject<Dictionary<string,
string>>(jsonResponse);
AuthToken = values["access_token'"];

InstanceUrl = values["instance_url"];

public void processPendingUsageInputs()

{
using (var client = new HttpClient())

{

string restRequest = InstanceUrl + API_ENDPOINT + "Apttus_Billing/
ProcessUsageInput/vl/";

var request = new HttpRequestMessage(HttpMethod.Post, restRequest);

request.Headers.Add ("Authorization", "Bearer " + AuthToken);

request.Headers.Accept.Add (new
MediaTypeWithQualityHeaderValue("application/json"));

request.Headers.Add ("X-PrettyPrint", "1");

var response = client.SendAsync(request).Result;

Console.Write(response);

Console.ReadlLine();

}

Input Format
This APl requires no input. ALl the Usagelnputs with status as Loaded are processed.
Output Format

This APl does not return any output. On completion of the batch job, the user receives
a batch job status email.

WSDL Services

Apttus Billing Management offers the following WSDL Services:

- Applying Credit Memos to Invoices

- Applying Payments to Invoices

- Adding a A/R Transaction - Deprecated

- Adding Multiple A/R Transactions - Deprecated

Prerequisites for invoking WSDL Services:

1. You need to Generate Entripse WSDL and Apex WSDL for ARTransactionService. For
information on generating enterprise WSDL, refer to Generating WSDL.
2. Add both the Generated WSDLs as a reference in your .Net Project.

Applying Credit Memos to Invoices

This APl indirectly applies a Credit Memo to an Invoice by creating Related A/R Transaction
records to reduce the tracked balance of the Invoice and the Credit Memo (double entry

accounting).

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_quickstart_get_WSDLs.htm

You can use this API for a single invoice or multiple invoices. For each Related A/R
Transaction Input passed in, a Related A/R Transaction Result will be returned. However,
the order of the results may not be the same as the order of the inputs.

For more details on A/R Transactions, refer to Related A/R transactions in Billing
Management User Guide.

applyCreditMemosTolnvoices(List<RelatedARTxnInput2> inputs)

Request

Field Type Required? Description

inputs List <RelatedARTxnInput2> | Yes List of RelatedARTaxInput2
records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput2

Field Type Description

Description String Description for the transaction.

DestinationObjld ID Id of the Destination Object.

ExternalSystemStatus String Status of the External System.

IntegrationDate Datetime Date of the system Integration.

ReasonCode String Reason for applying the A/R

transaction.

SourceObjld ID Id of the Source Object.
transactionAmount Decimal The transaction amount.
transactionDate Datetime The transaction date.
transactionlSOCurrency String The transaction Currency.

transactionNumber String The transaction number.

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput2

transactionSubType String
transactionType String
Response

Field Type

results List <RelatedARTxnResult2>

Sub-type of transaction (picklist
value).

Type of transaction.

Description

List of RelatedARTaxResult2 records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnResult2

Field

destinationARTransactionld

destinationObjld

errorString

sourceObjld

Status

transactionNumber

Code Sample

Type

ID

String

String

Description

A/R transaction Id for destination object.
The id of Destination object.

The Error message. Null value implies
success and non-empty string value implies
failure.

The id of Source object.

The Status of a transaction will be success
or failure.

The transaction number.

using System;

using sforce = ConsoleApplicationl.Sforcel;

using ARService = ConsoleApplicationl.ARTransactionService;
using System.Net;

namespace ConsoleApplicationl
{
class Program

{

static void Main(string[] args)

{

String sessionId;
using (sforce.SoapClient client = new sforce.SoapClient())
{
ServicePointManager.SecurityProtocol = SecurityProtocolType.Tlsl2 |
SecurityProtocolType.Tlsll;

//call login service

sforce.LoginResult result = client.login(null, "[ORG_UserName]",
"[ORG_Password]");

//extract authentication token

sessionId = result.sessionId;

//servicelUrl = result.serverUrl;

Console.WriteLine("Token generated: " + sessionId);

//call Related AR Transaction SOAP API
ARService.SessionHeader header = new ARService.SessionHeader();

header.sessionId = sessionId;

using (ARService.RelatedARTransactionServicePortTypeClient soapClient =
new ARService.RelatedARTransactionServicePortTypeClient())
{
ARService.RelatedARTxnInput2[] inputs = new
ARService.RelatedARTxnInput2[1];
ARService.RelatedARTxnInput2 input2 = new
ARService.RelatedARTxnInput2();
input2.destinationObjId = "[InvoiceID]";

input2.sourceObjId = "[CreditMemoID]";
input2.transactionAmount = 100.00M;
input2.description = "test description";
input2.integrationDate = DateTime.Today;
input2.transactionDate = DateTime.Today;
input2.transactionNumber = "AR12342";

input2.transactionType = "Credit Memo";

inputs[0] = input2;

ARService.RelatedARTxnResult2[] arResults = new
ARService.RelatedARTxnResult2[1];

soapClient.applyCreditMemosToInvoices(header, null, null, null,
inputs, out arResults);

Console.WriteLine("ARResult is: " + arResults[0].destinationARTransac
tionld);

Console.ReadlLine();

Applying Payments to Invoices

This APl indirectly applies a Payment to an Invoice by creating Related A/R Transaction
records to reduce the tracked balance of the Invoice and the Payment (double entry
accounting).

If no Payment exists for the specified Transaction Number then a Payment will be created
with the Payment Amount set to the Transaction Amount.

The API can be for a single Invoice or multiple Invoices. For each Related A/R Transaction
Input passed in, a Related A/R Transaction Result will be returned. However, the order of the
results may not be the same as the order of the inputs.

For more details on A/R Transactions, refer to Related A/R transactions in the Billing
Management User Guide.

applyPaymentsTolnvoices(List<RelatedARTxnInput2>
inputs)

Request
Field Type Description
inputs List <RelatedARTxnInput2> List of RelatedARTaxInput2 records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput2

Field Type Description

Description String Description for the transaction.
destinationObjld ID Id of the Destination Object.
externalSystemStatus String Status of the External System.
integrationDate Datetime Date of the system Integration.
reasonCode String Reason for applying the A/R transaction.
sourceObjld ID Id of the Source Object.
transactionAmount Decimal The transaction amount.
transactionDate Datetime The transaction date.
transactionISOCurrency String The transaction Currency.
transactionNumber String The transaction number.
transactionSubType String Sub-type of transaction (picklist value).

transactionType String Type of transaction.

Response

Field Type Description

results List <RelatedARTxnResult2> List of RelatedARTaxResult2 records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnResult2

Field Type Description

destinationARTransactionld ID A/R transaction Id for destination object.

destinationObjld ID The id of Destination object.

errorString String The Error message.Null value implies
success and non-empty string value implies
failure.

sourceObjld ID The id of Source object.

Status String The Status of a transaction will be success
or failure.

transactionNumber String The transaction number.

Code Sample

using System;

using sforce = ConsoleApplicationl.Sforcel;

using ARService = ConsoleApplicationl.ARTransactionService;
using System.Net;

namespace ConsoleApplicationl
{
class Program

{

static void Main(string[] args)

{

String sessionId;
using (sforce.SoapClient client = new sforce.SoapClient())
{
ServicePointManager.SecurityProtocol = SecurityProtocolType.Tlsl2 |
SecurityProtocolType.Tlsll;

//call login service

sforce.LoginResult result = client.login(null, "[ORG_UserName]",
"[ORG_Password]");

//extract authentication token

sessionId = result.sessionId;

//servicelUrl = result.serverUrl;

Console.WriteLine("Token generated: " + sessionId);

//call Related AR Transaction SOAP API
ARService.SessionHeader header = new ARService.SessionHeader();

header.sessionId = sessionId;

using (ARService.RelatedARTransactionServicePortTypeClient soapClient =
new ARService.RelatedARTransactionServicePortTypeClient())
{
ARService.RelatedARTxnInput2[] inputs = new
ARService.RelatedARTxnInput2[1];
ARService.RelatedARTxnInput2 input2 = new
ARService.RelatedARTxnInput2();
input2.destinationObjId = "[InvoiceID]";

input2.transactionAmount = 100.00M;
input2.description = "test description";
input2.integrationDate = DateTime.Today;
input2.transactionDate = DateTime.Today;
input2.transactionNumber = "AR12342";

input2.transactionType = "Payment";

inputs[0] = 1dinput2;

ARService.RelatedARTxnResult2[] arResults = new
ARService.RelatedARTxnResult2[1];

soapClient.applyPaymentsToInvoices(header, null, null, null, -inputs,
out arResults);

Console.WriteLine("ARResult 1is: " + arResults[0].destinationARTransac
tionId);

Console.ReadLine();

Adding a A/R Transaction - Deprecated

addRelatedARTransaction(RelatedARTxnlnput input)

This APl applies Credit Memo to Invoices as part of the A/R transaction.

Request
Field Type Description
input RelatedARTxnInput List of RelatedARTaxInput2 records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput

Field Type Description

collectionStatus String The Collection Status.

description String Description for A/R Transaction.

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput

externalSystemStatus String The Status of external system.
impactARAmount Decimal The A/R impact amount.

integrationDate Datetime Date of Integration.

invoiceld ID Invoice Id.

reasonCode String Reason code for creating A/R transaction.
relatedTransactionld String Related transacion id.
transactionAmount Decimal Transaction amount.

transactionDate Datetime Transaction date.
transactionEffectiveDate Datetime The effective date of transaction.
transactionNumber String Transaction number.

transactionType String The type of transaction.

Response

Field Type Description

result RelatedARTxnResult List of RelatedARTaxResult2 records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnResult

Field Type Description

errorString String Error string showing the error message.

Apttus_Billing.RelatedARTransactionService.RelatedARTxnResult

invoiceld ID Invoice Id.
relatedARTransactionld ID The related A/R transaction Id.
Status String Status of the transaction.
transactionNumber String Transaction number.

This APl is deprecated. Calling this APl will result in an error.

Adding Multiple A/R Transactions - Deprecated

This APl invokes RelatedAR Transactions.

addRelatedARTransactions(List<RelatedARTxnlnput>
inputs)

This APl is used to accept A/R Transactions in bulk.

Request

Field Type Required? Description

inputs RelatedARTxnInput Yes List of RelatedARTaxInput2
records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput

Field Type Description

collectionStatus String The Collection Status.

description String Description for A/R Transaction.

Apttus_Billing.RelatedARTransactionService.RelatedARTxnInput

externalSystemStatus String The Status of external system.
impactARAmount Decimal The A/R impact amount.

integrationDate Datetime Date of Integration.

invoiceld ID Invoice Id.

reasonCode String Reason code for creating A/R transaction.
relatedTransactionld String Related transacion id.
transactionAmount Decimal Transaction amount.

transactionDate Datetime Transaction date.
transactionEffectiveDate Datetime The effective date of transaction.
transactionNumber String Transaction number.

transactionType String The type of transaction.

Response

Field Type Description

results List <RelatedARTxnResult> List of RelatedARTaxResult2 records

Apttus_Billing.RelatedARTransactionService.RelatedARTxnResult

Field Type Description

errorString String Error string showing the error message.

Apttus_Billing.RelatedARTransactionService.RelatedARTxnResult

invoiceld ID Invoice Id.
relatedARTransactionld ID The related A/R transaction Id.
Status String Status of the transaction.
transactionNumber String Transaction number.

This APl is deprecated. Calling this APl will result in an error.

Apttus Copyright Disclaimer

Copyright © 2021 Apttus Corporation (“Apttus”) and/or its affiliates. All rights reserved.

No part of this document, or any information linked to or referenced herein, may be
reproduced, distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without the prior
written consent of Apttus. All information contained herein is subject to change without
notice and is not warranted to be error free.

This document may describe certain features and functionality of software that Apttus
makes available for use under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not, in any form, or by any means,
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part of the software. Reverse engineering, disassembly,
decompilation of, or the creation of derivative work(s) from, the software is strictly
prohibited. Additionally, this document may contain descriptions of software modules that
are optional and for which you may not have purchased a license. As a result, your specific
software solution and/or implementation may differ from those described in this document.

U.S. GOVERNMENT END USERS: Apttus software, including any operating system(s),
integrated software, any programs installed on the hardware, and/or documentation,
delivered to U.S. Government end users are “commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Neither the software nor the documentation were developed or intended for use in any
inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Apttus and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Apttus and X-Author are registered trademarks of Apttus and/or its affiliates.

The documentation and/or software may provide links to Web sites and access to content,
products, and services from third parties. Apttus is not responsible for the availability of, or
any content provided by third parties. You bear all risks associated with the use of such
content. If you choose to purchase any products or services from a third party, the

relationship is directly between you and the third party. Apttus is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the
agreement with the third party, including delivery of products or services and warranty
obligations related to purchased products or services. Apttus is not responsible for any loss
or damage of any sort that you may incur from dealing with any third party.

For additional resources and support, please visit https://community.conga.com.

DOC ID: BMSFSPR20APIG20200907

https://community.apttus.com

	About this Guide
	What's New
	Overview
	API Supported Packages
	API Standards and Development Platforms
	Standards
	Development Platforms

	Field Types

	Billing APIs
	Billing Services
	Creating Credit Memo Documents
	Creating Invoice Documents
	Creating Invoices
	Creating Invoices for Orders
	Previewing Pending Usage Inputs
	Processing Pending Usage Inputs
	Processing Rated Usage Inputs
	Updating Tax Calculations And Breakups on Credit Memos
	Updating Tax Calculations and Breakups on Invoice
	Forecasting Billing Schedules
	Creating Credit and Rebill
	Creating Billing Plans
	Forecasting Billing Schedules and Billing Summaries
	Creating Direct Credit Memos
	Creating Billing Plan with Product Configuration
	Forecasting Billing Schedules for Smart Cart
	Applying a Late Fee
	Cancelling a Late Fee

	REST Services
	Creating Invoices for Orders - REST Service
	Creating Invoices - REST Service
	Processing Pending Usage Inputs - REST Service

	WSDL Services
	Applying Credit Memos to Invoices
	Applying Payments to Invoices
	Adding a A/R Transaction - Deprecated
	Adding Multiple A/R Transactions - Deprecated

	Apttus Copyright Disclaimer

